Support Vector Machine (SVM)

Support vector machine

Support vector machines (SVMs) are supervised learning models that analyze data for classification and regression analysis. They build a model based on training examples to assign new examples to categories, using a non-probabilistic binary linear classifier. SVMs can also perform non-linear classification using the kernel trick, and the support vector clustering algorithm applies the statistics of support vectors to categorize unlabeled data using unsupervised learning approaches.

3 courses cover this concept

CS 229: Machine Learning

Stanford University

Winter 2023

This comprehensive course covers various machine learning principles from supervised, unsupervised to reinforcement learning. Topics also touch on neural networks, support vector machines, bias-variance tradeoffs, and many real-world applications. It requires a background in computer science, probability, multivariable calculus, and linear algebra.

No concepts data

+ 32 more concepts

10-401 Introduction to Machine Learning

Carnegie Mellon University

Spring 2018

A comprehensive exploration of machine learning theories and practical algorithms. Covers a broad spectrum of topics like decision tree learning, neural networks, statistical learning, and reinforcement learning. Encourages hands-on learning via programming assignments.

No concepts data

+ 55 more concepts

CS231n: Deep Learning for Computer Vision

Stanford University

Spring 2022

This is a deep-dive into the details of deep learning architectures for visual recognition tasks. The course provides students with the ability to implement, train their own neural networks and understand state-of-the-art computer vision research. It requires Python proficiency and familiarity with calculus, linear algebra, probability, and statistics.

No concepts data

+ 55 more concepts