Sequence-to-sequence (Seq2Seq)

Seq2seq

Seq2seq is a family of machine learning approaches used for natural language processing. It has applications in language translation, image captioning, conversational models, and text summarization. Seq2seq is widely used in many areas of natural language processing.

6 courses cover this concept

CS 182/282A: Deep Neural Networks

UC Berkeley

Fall 2022

An advanced course dealing with deep networks in the fields of computer vision, language technology, robotics, and control. It delves into the themes of deep learning, model families, and real-world applications. A strong mathematical background in calculus, linear algebra, probability, optimization, and statistical learning is necessary.

No concepts data

+ 14 more concepts

CSE 447 and 517 Natural Language Processing

University of Washington

Winter 2022

This course provides a comprehensive overview of Natural Language Processing (NLP), including core components like text classification, machine translation, and syntax analysis. It offers two project types: implementation problem-solving for CSE 447, and reproducing experiments from recent NLP papers for CSE 517.

No concepts data

+ 16 more concepts

CS 230 Deep Learning

Stanford University

Fall 2022

An in-depth course focused on building neural networks and leading successful machine learning projects. It covers Convolutional Networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. Students are expected to have basic computer science skills, probability theory knowledge, and linear algebra familiarity.

No concepts data

+ 35 more concepts

CS 224N: Natural Language Processing with Deep Learning

Stanford University

Winter 2023

CS 224N provides an in-depth introduction to neural networks for NLP, focusing on end-to-end neural models. The course covers topics such as word vectors, recurrent neural networks, and transformer models, among others.

No concepts data

+ 21 more concepts

11-785 Introduction to Deep Learning

Carnegie Mellon University

Spring 2020

This course provides a comprehensive introduction to deep learning, starting from foundational concepts and moving towards complex topics such as sequence-to-sequence models. Students gain hands-on experience with PyTorch and can fine-tune models through practical assignments. A basic understanding of calculus, linear algebra, and Python programming is required.

No concepts data

+ 40 more concepts

CS231n: Deep Learning for Computer Vision

Stanford University

Spring 2022

This is a deep-dive into the details of deep learning architectures for visual recognition tasks. The course provides students with the ability to implement, train their own neural networks and understand state-of-the-art computer vision research. It requires Python proficiency and familiarity with calculus, linear algebra, probability, and statistics.

No concepts data

+ 55 more concepts