First-order logic is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science which uses quantified variables over non-logical objects. It is distinguished from propositional logic by its use of quantifiers and relations, and it is studied in the foundations of mathematics as an axiomatization of number theory and set theory. It was developed independently by Gottlob Frege and Charles Sanders Peirce.
University of Washington
Autumn 2021
CSE 311 introduces theoretical computer science, the theory background necessary for other CSE courses, and how to construct rigorous, formal arguments. Topics include logic, set theory, modular arithmetic, induction, regular expression, and relations.
No concepts data
+ 33 more concepts